Covering Morphisms in Categories of Relational Algebras

نویسندگان

  • Maria Manuel Clementino
  • Dirk Hofmann
  • Andrea Montoli
چکیده

In this paper we use Janelidze’s approach to the classical theory of topological coverings via categorical Galois theory to study coverings in categories of relational algebras. Moreover, we present characterizations of effective descent morphisms in the categories of M ordered sets and of multi-ordered sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Van Kampen theorems for categories of covering morphisms in lextensive categories ’

We give a form of the Van Kampen Theorem involving covering morphisms in a lextensive category. This includes the usual results for covering maps of locally connected spaces, for light maps of compact Hausdorff spaces, and for locally strong separable algebras. @ 1997 Elsevier Science B.V. 1991 Muth. Sut~j. Cluss.: lSB99,57MlO

متن کامل

Fuzzy homomorphisms of algebras

In this paper we consider fuzzy relations compatible with algebraic operations, which are called fuzzy relational morphisms. In particular, we aim our attention to those fuzzy relational morphisms which are uniform fuzzy relations, called uniform fuzzy relational morphisms, and those which are partially uniform F -functions, called fuzzy homomorphisms. Both uniform fuzzy relations and partially...

متن کامل

Universality of Coproducts in Categories of Lax Algebras

Categories of lax (T, V )-algebras are shown to have pullbackstable coproducts if T preserves inverse images. The general result not only gives a common proof of this property in many topological categories but also shows that important topological categories, like the category of uniform spaces, are not presentable as a category of lax (T, V )-algebras, with T preserving inverse images. Moreov...

متن کامل

The Strong Amalgamation Property and (effective) Codescent Morphisms

Codescent morphisms are described in regular categories which satisfy the so-called strong amalgamation property. Among varieties of universal algebras possessing this property are, as is known, categories of groups, not necessarily associative rings, M -sets (for a monoid M), Lie algebras (over a field), quasi-groups, commutative quasi-groups, Steiner quasi-groups, medial quasigroups, semilatt...

متن کامل

The graphical calculus for ribbon categories: Algebras, modules, Nakayama automorphisms

Abstract The graphical description of morphisms in rigid monoidal categories, in particular in ribbon categories, is summarized. It is illustrated with various examples of algebraic structures in such categories, like algebras, (weak) bi-algebras, Frobenius algebras, and modules and bimodules. Nakayama automorphisms of Frobenius algebras are introduced; they are inner iff the algebra is symmetric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014